UG-C-2284 BMS-21X/ BMC-21X

U.G. DEGREE EXAMINATION – DECEMBER, 2023.

Mathematics

Second Year

GROUPS AND RINGS

Time : 3 hours

Maximum marks: 70

PART A — $(3 \times 3 = 9 \text{ marks})$

Answer any THREE questions out of Five questions in 100 words.

All questions carry equal marks.

- 1. Write a note on equivalence relation.
- 2. Show that in a group G, $x^2 = x$ iff x = e.
- 3. Define isomorphism of a group.
- 4. Write a short note on maximal ideal.
- 5. What is meant by euclidean domain?

PART B — $(3 \times 7 = 21 \text{ marks})$

Answer any THREE questions out of Five questions in 200 words.

Al! questions carry equal marks.

- 6. Let $f: A \to B$, $g: B \to C$ be bijection and then prove that $g \circ f: A \to C$ is also a bijection.
- 7. Show that a non-empty subset *H* of a group *G* is a subgroup of *G*, iff $a, b \in H \Rightarrow a \ b^{-1} \in H$.
- 8. Let *H* and *k* be two finite subgroups of a group *G*, then prove that $|H|K| = \frac{|H||K|}{|H \cap K|}$.
- 9. Show that the intersection of two subrings of a ring R is a subring of R.
- 10. Show that the field of complex number is not an ordered field.

PART C — $(4 \times 10 = 40 \text{ marks})$

Answer any FOUR questions out of Seven questions in 500 words.

All questions carry equal marks.

- 11. Show that any partition of a set S determines an equivalence relation ρ such that the members of the partition are precisely the equivalence classes define by ρ .
 - 2 UG-C-2284

- 12. Show that the union of two subgroup of a group G is a subgroup, if one is contained in the other.
- 13. State and prove Lagrange's Theorem.
- 14. State and prove Fundamental theorem of homomorphism of a group.
- 15. Let *R* and *R'* be rings and $f: R \to R'$ be an isomorphism. Then prove that the following:
 - (a) R is commutative $\Rightarrow R'$ is commutative
 - (b) R is an ring with identity $\Rightarrow R'$ is a ring with identity
 - (c) R is an integral domain $\Rightarrow R'$ is an integral domain
 - (d) R is a field $\Rightarrow R'$ is a field.
- 16. State and prove Cayley's theorem.
- 17. Prove that any euclidean domain R is a unique factorization domain.

3

UG-C-2286 BMS-23X/ BMC-22X

U.G. DEGREE EXAMINATION – DECEMBER, 2023.

Mathematics

Second Year

CLASSICAL ALGEBRA AND NUMERICAL METHODS

Time : 3 hours

Maximum marks: 70

PART A — $(3 \times 3 = 9 \text{ marks})$

Answer any THREE questions out of Five questions in $100 \ {\rm words}.$

All questions carry equal marks.

1. Prove that

$$\frac{a-x}{a} + \frac{1}{2} \left(\frac{a-x}{a}\right)^2 + \frac{1}{3} \left(\frac{a-x}{a}\right)^3 + \dots = \log a - \log x \; .$$

- 2. If α and β are the roots of $2x^2 + 3x + 5 = 0$, find $\alpha + \beta, \alpha\beta$.
- 3. What is the condition for the convergence of the iterative method for solving $x = \phi(x)$?

4. Prove that:

- (a) $E = 1 + \Delta$
- (b) $E = (1 \nabla)^{-1}$

5. Given $u_0 = 1$, $u_1 = 15$, $u_2 = 57$ find $\frac{dy}{dx}$ at x = 2.

PART B — $(3 \times 7 = 21 \text{ marks})$

Answer any THREE questions out of Five questions in 200 words.

All questions carry equal marks.

- 6. Sum the series $1 \frac{1}{4} + \frac{1.3}{4.8} \frac{1.3.5}{4.8.12} + \dots \infty$.
- 7. Solve the equation $x^3 12x^2 + 39x 28 = 0$ whose roots are in A.P.
- 8. Find the value of $\sqrt{5}$ by Newton-Raphson method.
- 9. Use Lagrange's interpolation formula to fit a polynomial to the data and find the value of y when x = 2

10. Solve y' = x + y given y(1) = 0 and get y(1,1), h = 0.1 by Taylor's series method.

PART C — $(4 \times 10 = 40 \text{ marks})$

Answer any FOUR questions out of Seven questions in 500 words.

All questions carry equal marks.

- 11. Prove that $\sum_{n=0}^{\infty} \frac{5n+1}{(2n+1)!} = \frac{e}{2} + \frac{2}{e}$.
- 12. Solve $6x^6 35x^5 + 56x^4 56x^2 + 35x 6 = 0$.
- 13. Solve the system of equations by Gauss Jordan method

2x + 3y - z = 5.

4x + 4y - 3z = 3

2x - 3y + 2z = 2

14. Using Laplace-Everett's formula find log 337.5 given that

15. By dividing the range into six equal parts, evaluate $\int_{0}^{6} \frac{1}{1+x} dx$ using Trapezoidal rule, Simpson's $\frac{1}{3}^{rd}$ rule and Simpson's $\frac{3}{8}^{th}$ rule.

- 16. (a) Find the value of x when y = 7 by Lagrange's Interpolation formula.
 - x 1 3 4 y 4 12 19
 - (b) Express $3x^3 2x^2 + 7x 6$ in factorial polynomials and get their successive forward differences tanking h = 1.
- 17. If α, β, γ are the roots of the equation $x^3 - px^2 + qx - r = 0$ find the value of
 - (a) $\Sigma \alpha^2$ (b) $\Sigma \alpha^3$
 - (c) $\Sigma \alpha^2 \beta$ (d) $\Sigma \alpha^2 \beta^2$

4 UG-C-2286